
Specification for User Modeling with Self-observing Systems

Mathias Funk, Piet van der Putten, Henk Corporaal
Dept. of Electrical Engineering, Electronic Systems Group

Technical University Eindhoven, The Netherlands
Email: [m.funk, p.h.a.v.d.putten, h.corporaal]@tue.nl

Abstract

The complicated user interfaces and complex func-
tionality of nowadays interactive products lead to a
new class of failures: People do not understand their
products and thus fail to use them successfully; many
products are returned for which no detectable errors
can be found. These field problems of interactive prod-
ucts cannot be found by traditional testing methods.
Industry needs reliable and structured information
about the users’ behavior to get understanding about
the root cause of so called soft product failures. In this
paper we present a framework that helps usability and
quality experts to derive user models from product ob-
servation. This is supported by a novel visual language
for specification what should be observed and how
collected data is represented, and a system architecture
for distributed self-observing systems. This approach
separates the concern definition of observation from
the implementation of observation facilities.

1. Introduction

In the context of nowadays highly intricate con-
sumer products, e.g. innovative digital products or
professional office products, there is often a mismatch
between expectations of customers and the specifi-
cation of products. Complex products with complex
user interfaces offer a lot of different functions which
results in a large mental effort to “learn” a product. To
complicate this even more, current interactive products
implement multiple ways to reach a goal. Customers
are confused to a large extent. The tradeoff between
user needs and the required effort to master the product
is such that often only a minimal amount of the prod-
uct’s functionality is used. Customers are not satisfied,
though the product works according to its specification.
When contacted, service centers cannot find any faults
with the product. This causes that products are returned
to the shop or reside lost in boxes on the attic.

Although there exist sophisticated techniques to find
(hard) failures in products for many years now, those
failures cover only a decreasing share in the overall
failure statistics. A new class of soft faults [1], [2]
appears. Those faults often cannot be tracked to the
product itself and partly result from customers’ in-
abilities to use products successfully. Nonetheless, for
commercial reasons industry has to approach this mat-
ter as “product faults”. The more complex a product
is, the more soft faults arise. Especially during usage
in their habitual environment users experience product
failures that are different from those discovered in
usability labs or other in-house testing environments.
Until recently, companies had no means to acquire
information of in-the-field usage problems and had to
rely on the small share of products coming back for
repair or replacement. Even then, the only information
that is tracked and fed back to the development team
is related to the actual malfunctioning of the de-
vices. Moreover, the gathering of information is often
complicated by outsourcing the tasks of repair and
replacement of malfunctioning parts to subcontractors.
So, it can be stated that mostly no real structured
data about the usage of products is coming back from
released products.

Our approach tries to establish a novel communi-
cation channel from product to company that enables
the collection of usage data by the product itself.
Information about the use and performance of products
in the field is fed back to the company and can
be incorporated in product development and quality
assurance. Figure 1 shows user modeling as integral
part of an iterative product development process. In
this paper we focus on product observation which
results in collected usage data. This information is
subsequently interpreted, a process that should finally
give understanding of the user, but will at first come
up with new requirements for observation. This cycle
is intended to result in relevant product usage data.

People interested in usage information have not the



Figure 1. User modeling as a part of the product development process

same profession as system engineers or programmers;
they are quality engineers, interaction designers, prod-
uct managers, and service coordinators. In contrast to
system developers, this special group of stakeholders
has probably a much better vision on what should
be observed. Consequently, the definition of items to
be observed should not be done via a programming
language that uses unintuitive concepts and takes un-
necessary effort to learn. Instead the definition should
be close to the domain of observation and should
abstract from the architecture and design of self-
observing products.

The solution that addresses this problem consists
of two parts. First a graphical language for product-
independent specification of observation behavior. Sec-
ond, the engineering counterpart, there is a system-
architecture which supports an easy integration of
observation functionality into a product. The goal is
to split the definition of observation from the technical
implementation that makes a system observable.

In the following sections, after pointing at related
work, our approach to modeling the user’s behavior
shall be described, followed by a description of a
novel visual specification language for observation and
an architectural overview. The paper ends with an
ongoing validation of the approach by presenting a
case study. The research is carried out in the context of
a multi-disciplinary project together with researchers
from industrial design and technology management.

2. Related work

The research presented here is strongly connected
to the field of user modelling and the framework
we developed stands in the tradition of generic user
modelling systems (for an extensive overview see [3]).
As user modeling is a heterogenous field, there have
been several approaches to structure the domain [4].
User modeling and profiling are also often connected
to web-based systems [5] and ambient systems [6]. In
the area of remote monitoring there have been efforts
to monitor deployed software [7] and to use logging

inside products [8]. This work emphasizes the need
of simple means for professional users that are less
knowledgeable about software development to define
executable systems, leading into the domain of end-
user programming [9] and visual languages [10].

3. User modeling

Most users do not understand the internals of their
products, but still want to achieve goals by interacting
with those systems. Thus they form each their own
mental model of the product. These models are struc-
tured mental pictures of a product and its interaction
possibilities [11]. For complicated products, people of-
ten fail to create an appropriate mental model, but rely
rather on a misleading fantasy picture, featuring false
expectations that consequently can lead to customer
disatisfaction. In case a user’s mental model is not
according to reality, it gets harder to use the product
[12]. Also product designers may have an unrealistic
mental model of the user [13]. The question is, can we
improve the design process such that a better match can
be achieved between designed product and user expe-
rience. This improvement cannot be expected unless
we get better understanding of the user’s interaction
patterns, habits, problems and mental models.

The process of observation and interpretation (see
figure 1) provides user models that concentrate on
specific parts of the user’s interaction with the product.
We do not believe in all-purpose user models for
product research. Models should be problem-specific
and should structurally adapt to different user types and
application areas [14]. The definition of observation
determines the input for a user model. For instance,
observation can focus on the usage of specific product
parts or can involve observation of different system
parts, resulting in data that pose a problem-oriented
view on the interaction. Depending on the product and
its environment, even contextual information can be
collected. Especially in combination with user interac-
tion information, this can give means to approach soft



faults and to find root causes of the mismatch between
user expectations and the actual product.

In general the information sources, in the following
called product hooks, are regarded as abstract places
where events are recorded or values are sampled.
This abstraction separates the definition of observation
from the actual target system. The range of captured
information can vary from rather low-level events like
key-presses and application window’s state changes to
high-level events that imply already some semantic
knowledge, for instance, about the user interaction.
Still, in most cases low-level data is the sole source
of substantial information. Sometimes, basic events of
this kind have to be combined to more meaningful
complex events [15]. Various operations might be
applied, such as normalization and the correlation and
aggregation of data.

Figure 2. Observation: from definition to analysis,
to definition

Also, data collection can be reactive. For example,
the occurence of one event at hook A triggers an
computationally expensive information retrieval from
another hook B. The two data are then combined into
a new complex event C. An alternative is to simply
trigger hook B periodically, however it becomes clear
that the first approach obviously uses less system
performance. Furthermore, it also reduces the amount
of collected information to most the relevant parts.
This is something which cannot be achieved with the
traditional approach to combine logging techniques
with offline information processing. Finally, complex
events are aggregated into a data structure which
supports further offline processing, visualization, and
interpretation.

Moreover, an important aspect is that probably
observation requirements change over time, this is
known as concept drift [16]. The gained insight of
one first observation can be a trigger to more in-depth
information needs, as well as separate user models
for different user groups once they are classified.
The proposed approach supports a fluent change of
observation by updating the observation components
in all local products automatically. We envision an
iterative cycle between the definition of observation

instruments, the actual data collection, and analysis
(see figure 2). This cycle can be performed many
times and can support very flexible methods of product
usage research. Experiments do not have to be planned
largely in advance, but can incrementally develop over
time and adapt to recent findings - leading to more
precise data and thus a novel picture of the user’s
interaction with system and environment.

4. Visual language

The key to this research is to involve the right
people by building a strong connection between the
stakeholders of observed information and the definition
of observation. We want to provide them with tools that
enable that they define themselves what information
needs to be observed. The ways to do this should
have a natural fit to domain and thinking of these
stakeholders. We developed a visual language that is
intended to have a natural expressivity for the task
of observation specification. Therefore the language
abstracts from engineering tasks that will be performed
subsequently in order to realize a self-observing sys-
tem in the whole. Instead, a few key concepts serve
as abstraction layer that hides the actual concurrent,
event-driven observation system. Observation can be
specified using the following concepts:

• Product hooks represent places where actual data
is measured or collected. So hooks are sources
of product events that possibly also carry data
samples. Hooks can deliver events on occurence,
but also can be triggered.

• Timers trigger product hooks periodically and are
adjustable to various durations, from millisec-
onds, minutes, hours to weeks and months.

• Data collections store incoming events and sup-
port lists, sets or sliding window concepts.

• Processing nodes compute and aggregate events
or event data.

• Routes connect the afore mentioned objects and
ensure timely data and message transfer.

The abstraction enables a straightforward definition of
observation without consideration of platform charac-
teristics, programming tasks, data transfer and storage,
and automatic product configuration.

Ealier versions of the language contained various
different elements that specified seldomly used aspects
of observation and partly did not abstract well from
technical details. For instance, we removed language
elements that combined data storage with the compu-
tation of aggregates. The visual language evolved to its
current state with just a few concepts (see above) that



Figure 3. Visual editor with observation definition example

still cover the intended functionality. We considered
this state mature enough to develop tooling.

The graphical editor depicted in figure 3 provides
building blocks for the key concepts (see the palette
on the right side of the figure) of the visual lan-
guage. It offers graphical assistance to define the
intentional structure of a self-observing system. The
visual language makes products accessible in terms of
observation data sources. It provides intuitive means to
define a precise specification of observation, that can
directly be used to actually perform observation tasks
inside products.

For an educational example see figure 3. This use-
case simply tracks the average duration of stand-by
time, and weekly exports this information to the global
observation. The stand-by time is defined as the time
span between a system suspend and a subsequent sys-
tem resume event. For this two hooks (SystemSuspend,
SystemResume) are incorporated and trigger a process-
ing block duration. The naming of ingoing routes intu-
itively defines how the data should be correlated; in this
case the time-wise difference between events coming
in from the from and to routes are computed. The
outgoing value is routed to a data block that represents
a list of values. A weekly trigger (round shape) causes
a computation of the list’s average and the export
of this information to the global outlet Export. This
example shows the combination of two system events
to a complex data source. With the traditional logging
approach the two system events would be spread all

over the entire log file and would have to be filtered
out using appropriate data mining techniques. Then
the events would have to be paired, subtracted and
averaged. Compared to that, the application of a-priori
knowledge about a systems behavior using observation
facilities can provide superior results with less effort.

5. Self-observing system architecture

The definition of observation with the visual editor
(see figure 3) results in a specification file that can
be loaded and executed by all observation compo-
nents inside products. The file is published using
the global observation server and will be given a
unique identification number in order to track which
model was later on responsible for which collected
data. Figure 4 shows the distribution of the overall
observation system. Gradually the local product units
(in figure 4 below the global observation unit) are
updated with the new instructions and will from then
on start to monitor respective events. The depicted
product instances represent observation components
that are integrated into products and execute this model
inside a specialized runtime environment. The degree
of integration determines many aspects of the overall
system, for instance, how many concurrent events can
be monitored or how the communication with the
global unit takes place.

The integration of observation components into
products depends on various factors that have to play



Figure 4. Overview of observation system

together in order to make this technology work. As
there is a lot of variability among applicable systems,
it is necessary to emphasize modularity that helps
to bridge certain gaps in the implementations. The
description of detailed integration mechanisms is out of
the scope of this paper, but will be part of a later work,
also introducing a design method for such systems.
More information about the architecture can be found
at [17].

The data that is collected and sent to the global
unit is aggregated and stored in a database. From this
point different scenarios are imaginable: the data can
be visualized using charts that are updated in real-time,
it can be analyzed using process mining techniques
[18]. Also, events can be bound to alerts that are
raised whenever a certain combination of low-level
product events occur. Furthermore future uses include
the incorporation of selected parts of the usage data
into help-desks and repair shops in order to provide a
better service quality to customers.

6. Case study

Our approach towards user modeling is currently
being validated in collaboration with a large industrial
partner. The consumer electronics products that are
extended with self-observation facilities are in the
alpha phase of development and serve as demonstrators
that are given to key testers. These people use the
“extended” products at home and will in the end also
report subjective experiences. In the test, there are
about 20 machines used in 8 countries world-wide
with a collection of 15.000 to 28.000 data items daily
depending on the actual usage behavior. Because of
the privacy-intrusive nature of the test all users have
been instructed about the conditions and accepted the
fact that user-related data is collected.

The observation infrastructure that is in place con-
sists of an observation authoring application which

is based on the Eclipse platform [19]. A webserver
provides both the configuration and data collection
from local units using HTTP requests for communi-
cation. Additionally collected data is visualized using
a web charting component (for structure see figure
4). The observation components integrated into the
local products are implemented by using the .NET
framework and hook into Windows-based systems. For
the current industrial case we decided on the approach
to execute the observation definition directly inside a
runtime environment which emphasizes the intended
reconfigurability. This runtime environment is designed
in such a way, that it can be used also in future versions
of the framework and also as an integral part of the
design method.

When the case-study started the product hooks were
only partly in place. Still, product developers were
convinced easily to integrate more hooks into the
product. In collaboration we built a hook interface
for application-specific hooks and tested the system
successfully using the visual authoring environment.
Although the study is currently in progress, valuable
findings throughout the development could already
help to improve the integration of observation into pre-
existing products. It became evident that developers
showed the most interest in the visual authoring en-
viroment to define what should be observed. Whereas
quality engineers informally agreed on the type of data
to capture and then delegated to the developers in the
team. While not being interested so much in the exact
definition of retrievable information, the presentation
of collected data was a major concern. This expresses
that the current design of the visual language as an
abstraction layer above an event-based system still
is part of the technical domain. The key concepts
match the thinking of observation stakeholders less
than expected. This poses new requirements for future
iterations of the visual language to build a bridge



between the technical domain of observable events and
entirely data-related presentation methods.

Todays products are more often developed in small
teams that merely specify the product and outsource
well-defined subtasks. When the members of such a
small product unit, managing the product development
over the entire life cycle, develop an understanding for
the importance of observability, they can work together
closely on a specification of self-observation.

7. Conclusion

Regarding the fact that products are currently not
designed for observation, we are working in the di-
rection of a design method for self-observing systems.
Therefore we developed an experimental framework
for specification and implementation of observation
functionality. A new visual specification language has
been developed and simplifies the task of product usage
data collection. We are in the phase where we try to
get experience with this language and validate it. First
usage results look very promising. We see that the
availability of structured usage data that is captured
directly inside of complex products gives options to
collaborate and to apply knowledge. Especially the
area of soft-faults and user modeling in general can
benefit from this. For understandable and even adaptive
products a strong observation foundation is needed to
get insight in how the user currently uses a system and
what his perceptions might be.

Acknowledgments

This work is being carried out as part of the “Man-
aging Soft-Reliability in Strongly Innovative Product
Creation Processes” project, sponsored by the Dutch
Ministry of Economic Affairs under the IOP-IPCR
program.

References

[1] E. den Ouden, L. Yuan, P. Sonnemans, and A. Brom-
bacher, “Quality and reliability problems from a con-
sumer’s perspective: an increasing problem overlooked
by businesses?” in Quality and Reliability Engineering
International, vol. 22, no. 7, 2006.

[2] A. Koca, A. Schouwenaar, and A. Brombacher, “Analy-
sis of user-centered failure mechanisms in new product
development for quality improvement,” in Proceedings
of the 14th International Annual EurOMA Conference,
Ankara, Turkey, 2007.

[3] A. Kobsa, “Generic user modeling systems,” User
Modeling and User-Adapted Interaction, vol. 11, no. 1,
pp. 49–63, Mar. 2001.

[4] M. Yudelson, T. Gavrilova, and P. Brusilovsky, “To-
wards user modeling meta-ontology,” in User Model-
ing, 2005.

[5] D. Godoy and A. Amandi, “User profiling for web page
filtering,” IEEE Internet Computing, vol. 9, no. 4, 2005.

[6] N. Fine and W.-P. Brinkman, “Informing intelligent
environments: creating profiled user interfaces,” in EU-
SAI ’04: Proceedings of the 2nd European Union
symposium on Ambient intelligence, 2004.

[7] M. Diep, “Profiling deployed software: Assessing
strategies and testing opportunities,” IEEE Trans. Softw.
Eng., vol. 31, no. 4, 2005.

[8] J. Kort and H. de Poot, “Usage analysis: combining
logging and qualitative methods,” in CHI ’05: CHI
’05 extended abstracts on Human factors in computing
systems, 2005.

[9] H. Lieberman, F. Paterno, and V. Wulf, End-user devel-
opment, H. Lieberman, F. Paterno, and V. Wulf, Eds.
Berlin : Springer, 2006.

[10] B. A. Myers, “Visual programming, programming by
example, and program visualization: A taxonomy,”
in Visual Programming Environments: Paradigms and
Systems, E. P. Glinert, Ed. IEEE Computer Society
Press, 1990.

[11] P. N. Johnson-Laird, “Mental models,” pp. 469–499,
1989.

[12] K. Ehrlich, Mental Models in Cognitive Science: Essays
in Honour of Phil Johnson-Laird, 1996, ch. Applied
Mental Models in Human-Computer Interaction.

[13] E. Karapanos and J.-B. Martens, “Characterizing the
diversity in users’ perceptions,” in Proceedings of In-
teract 2007, Rio de Janeiro, Brazil, 2007.

[14] E. Rich, “Users are individuals: individualizing user
models,” Int. J. Hum.-Comput. Stud., vol. 51, no. 2,
pp. 323–338, 1999.

[15] D. C. Luckham, The Power of Events: An Introduction
to Complex Event Processing in Distributed Enterprise
Systems. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 2001.

[16] G. Widmer and M. Kubat, “Learning in the presence
of concept drift and hidden contexts,” Mach. Learn.,
vol. 23, no. 1, pp. 69–101, 1996.

[17] “The D’PUIS framework,” 2007. [Online]. Available:
www.softreliability.org/dpuis

[18] B. van Dongen, A. de Medeiros, H. Verbeek, A. Wei-
jters, and W. van der Aalst, Applications and Theory
of Petri Nets 2005, 2005, ch. The ProM Framework: A
New Era in Process Mining Tool Support, pp. 444–454.

[19] “Eclipse,” 2007. [Online]. Available: www.eclipse.org


