
Model Interpretation for Executable Observation Specifications

Mathias Funk, Piet van der Putten, Henk Corporaal
Dept. of Electrical Engineering, Electronic Systems Group

Eindhoven University of Technology, The Netherlands

E-mail: {m.funk, p.h.a.v.d.putten, h.corporaal}@tue.nl

Abstract

Observation functionality integrated into interactive
products can help companies identifying current consumer
requirements and expectations. As these needs can change
rapidly, detailed information about product usage that
comes from habitual interaction is crucial to evaluate prod-
uct acceptance and relevance. We explore how products
can be extended with observation functionality that satis-
fies the information needs of multi-disciplinary experts in
the development team. In the process of product evalua-
tion, information requirements are bound to change, and
so is the observation behavior. Our approach addresses
this by integrating observation functionality into products
which can be adapted to current information needs. This
paper presents a novel way to remotely configure products
in the field by using high-level models, graphical observa-
tion specifications, that are interpreted by a runtime envi-
ronment built into the products in the field. An industrial
case-study shows the applicability of the approach. This
work is part of ongoing development aiming at a generic
observation integration methodology.

1. Introduction

Complex consumer electronics products as well as other
innovative product categories nowadays integrate many dif-
ferent features in order to serve a large group of customers.
The mass of functions has to be accessed through a user
interface which in turn gets more and more complicated.
Users have problems to find their ways. Increasing numbers
of returned products without any detectable failures suggest
this [3].

Furthermore nowadays product creation processes are
characterized by high complexity of products and they are
influenced by rapidly changing customer demands. Hence,
an up-front specification of the product becomes hard if
not impossible. In the past, products could be improved in

the next version, but today the markets often demand com-
pletely new products. Technologies have to reach a level of
maturity in a shorter time. The lack of information about the
customers’ needs leads to a situation where companies press
functionality into products, thus entering a vicious cycle of
complexity [1]. This blurs the customer’s understanding of
the product and a match between customer expectations and
the actual capabilities of the product becomes even more
unlikely.

An approach to address this industry-wide problem is to
get representative user feedback on try-out products or pro-
totypes [2]. Traditionally this is done by collecting cus-
tomer opinions in questionnaires and video-taping user in-
teractions with the product in usability labs. Nowadays,
with almost ubiquitous internet access, other methods can
be used which are expected to provide much richer data on
the actual used product features and user preferences. The
integration of observation modules into products can enable
data collection according to the actual and ever changing in-
formation needs of the product development team.

Our research aims at the introduction of observation in-
tegration or design for observation as a first class develop-
ment task, because the delivery of relevant information of
use and possibly user expecations will become more impor-
tant in the future of product development.

In this work we address a problem that occurs when the
development processes are not yet tuned to observation inte-
gration in an efficient way: observation is brought into prod-
ucts late in the development process. Due to changing re-
quirements for observed information, the implemented ob-
servation functions have to be adapted regularly. This holds
especially for the use phase, when products are given to
testers. Then, highly adaptable and remote observation is
crucial. This causes a substancial effort not only for de-
velopers but also for observation specification and certainly
for the alignment of both. If the adaptation mechanisms are
not automated, product evaluation becomes difficult if not
impossible. Therefore automation of observation specifica-
tion deployment is a primary precondition for such product
evaluation methods.



More precisely, we address the technical transition pro-
cess between observation specification and the dynamic ex-
ecution of a translated specification, possibly to be con-
structed during runtime. As a result, observation facilities
support this scenario of remotely adapted observation via a
communication channel like the internet. Figure 1 shows
an overview on such a system, consisting of an authoring
environment, a server instance, several products in use and
further services dealing with the analysis and visualization
of collected product usage information. We refer to [8] for
an explanation of system and its use to model users and their
interaction with a consumer electronics product.

In the following sections, after pointing at related work,
the approach of observation modeling is explained together
with a description of visual specification and observation
modules. This is followed by the core section about model
interpretation. The paper ends by presenting a case study
which shows the applicability of the approach in the context
of new product development.

2. Related work

The research on observable products as described in this
paper is on the one hand strongly connected to the field of
user modeling. The framework we developed stands in the
tradition of generic user modeling systems (for an exten-
sive overview see [12]). On the other hand, it is in the
area of remote runtime monitoring where there have been
efforts to monitor deployed software [4] and to use logging
inside products [13]. The use of a client-server architecture
for information distribution across a network of products
is straight-forward in this domain and has been described
before [10]. However, our approach of remotely change-
able observation behavior differs from traditional monitor-
ing as we do not assume a pre-defined set of information
sources, but deal with constantly changing information re-
quirements. In this sense, the research stands also in relation
to adaptive software [11]. This paper tackles the problem
of flexible instrumentation of observation modules. Our ap-
proach is based on the specification of observation by use of
a domain-specific language [6]. The specified observation
is executed on products, which is an application of model
interpretation [5]. Compared to well-known model-driven
approaches like MDA and MDE [14, 7] this technique of-
fers a dynamic transformation shortcut from model to exe-
cutable.

3. Observation

The observation of remote systems potentially covers a
wide range of complex electronic products. It is seldomly
done in an engineering approach aiming at reuse and a long-

term application. Especially for product families observa-
tion gains importance: it is one of the few system parts
which are easiest to generalize. Moreover, the collected in-
formation has a large influence on the specification and the
targeting of future products within the product family.

Figure 1. Framework overview

Observation is done in several subsequent steps: Infor-
mation is sensed by so called hooks which might imply
that an information source is either triggered periodically
for data or raises an event itself. Resulting low-level data
is processed in the next step and can herewith be aggre-
gated, normalized or temporarily cached. This preprocess-
ing stage yields complex events which result from the com-
bination of multiple low-level sources. Depending on the
extent of aggregation and event correlation those events
can carry enough semantic information to be relevant for
analysis by information stakeholders. Finally, the data has
to be collected centrally which allows for real-time visu-
alization and post-processing using external tools. Obvi-
ously, information capturing and preprocessing which are
performed on the individual product instances have a huge
impact on the quality of the information that is presented to
post-processing and analysis.

3.1. Observation system

An observation system (cf. fig. 2) consists of three main
layers, (i) the authoring and analysis layer where specifica-
tion of observation and the captured information is worked
with, (ii) the repository layer which accomplishes the task
of configuration and data aggregation, and (iii) the observa-
tion layer with local product instances. Observation specifi-
ations have to transmitted to product instances and observed
information has to be captured in a central instance for fur-
ther analysis. In the optimal case, a knowledge engineer
can define an observation specification and the infrastruc-
ture provides all services necessary to configure product in-
stances and transport the data back for analysis.

In this and following sections, we will concentrate both
on a part of the authoring and analysis layer and the ob-
servation layer. The aforementioned specification of ob-
servation consisting of (i) hooks, (ii) processing, and (iii)
export, can be modeled by a visual language using few



Figure 2. Observation system overview

graphical building blocks (see section 3.2). On the observa-
tion layer a runtime structure called observation component
(OC) is constructed from a visual observation specification
by means of model interpretation. An OC is a pluggable
part of the observation module that is connected to a spe-
cialized runtime environment inside the observation module
(cf. fig. 2).

The development effort for a working observation sys-
tem as a whole can be split up into two main tasks: (i) in-
tegration of observation into systems including a middle-
ware capable of information delivery between the observa-
tion layer and the repository layer, and (ii) the definition
of observation via the visual language. This separation of
concerns supports the roles involved in the process: prod-
uct developers handle the first task and information stake-
holders define what should be observed. Ideally, a third role
comes in, the observation developer, who shoulders the bur-
den of observation-specific programming which includes,
for instance, the infrastructure, editor customizations and
platform-specific adaptations of the observation module.

3.2. Visual language

Observation specification should be performed by ex-
perts in the domain of user-related information or other
product information stakeholders. Often those people do
not have the necessary system engineering and program-
ming skills to instruct a distributed system of product in-
stances. Therefore we propose a visual specification lan-
guage that hides low-level programming matter and enables
domain experts to take advantage of their special knowl-

edge about product information. It is a domain-specific lan-
guage that focusses on observation only. Likewise, concepts
of general purpose programming languages which are inap-
propriate for the specification can be left out. The essential
language elements shall be described in the following.

Hooks are places for information retrieval and they are
basically the only information inlets of the observation sys-
tem. There are two types of hooks, the ones that have to
be triggered to yield data, and the ones which trigger them-
selves and can be seen as manifestations of events in the
over-all system. As event generators, hooks are also the
sole platform-specific parts of the system and represent an
interface between the product’s internals and the observa-
tion module. The hooks that are not self-triggering can be
linked to timers which simply realize periodic signals that
cause those hooks to fire. This sampling technique is used
especially for information like performance measurements
or resource load that has a continuous nature.

Hooks generate low-level system data that is mainly not
immediately useful for analysis. It is a mass of atomic sys-
tem events, that has no inherent structure and does not gain
any comprehensive results - let alone answering specific
questions. Therefore this data has to be preprocessed to be-
come meaningful. The next stage of the observation spec-
ification tackles this aspect. Hook data is routed through
processing blocks. Processing can involve calculations to
normalize incoming numbers or the correlation of multiple
events to gain derivative complex events. Closely related
are caching blocks that enable data snapshots and can, for
instance, be used as a sliding window over an event stream
to compute a floating average.

After finishing those early computations the information
shall be exported. This means to transfer it from the prod-
uct instance to the repository layer that gathers all product
usage data in a central data storage. For this purpose the vi-
sual language contains an outlet symbol, which can be used
to route outgoing information and to label the information
according to the semantics it represents.

All aforementioned visual blocks can be linked by routes
which connect the outlet of a block with inlets of other
blocks, thus forming a directed graph (cf. fig. 4 for an
example). An observation specification denotes an event-
driven system that reacts on the occurence of events and
may also trigger hooks by the use of timers. Still, from the
user perspective the flow of information in such a descrip-
tion can be seen relatively easily and the language abstracts
from concurrency issues as well as from potential data con-
version problems. Its visual form allows to concentrate on
the matter of specification on the information level.



Figure 3. From observation specification to
observation component

3.3. Observation module

The visual language’s counterpart on the observation
layer (cf. figure 2) is a module integrated into the system
to be observed. The degree of integration into the host sys-
tem depends on the required access on information sources.
An observation module can be realized in multiple fashions,
e.g. as a plugin for existing software, as separate software
or even as a dedicated hardware subsystem - as long as the
basic requirements (i) access to information sources and (ii)
communication capabilities with a repository layer are ful-
filled. For less strict requirements, observation modules can
accompany a system as long as its services are needed and
should be easy to remove after use. Also the impact on sys-
tem performance and of course privacy as well as security
issues have to be considered carefully, but are out of scope
here.

As mentioned before, the module provides internal exe-
cution capabilities: it receives an observation specification,
constructs and runs an OC, and delivers the collected infor-
mation towards the repository layer. Therefore it consists
of several parts that play a role in communication, configu-
ration and the observation itself. The communication sub-
system jointly realizes the data transmission infrastructure
depicted in figure 2 together with a server on the repository
layer. The configuration subsystem essentially contains the
parts shown in figure 3 which parse and construct an OC
from a specification (further discussed in 4.1). The building
blocks of an OC are particularly interesting in the context
of the next section and shall be described there.

4. Model interpretation

Model-driven engineering being one of the most influ-
encal achievements in recent system development is also at
the core of technical observation development. Especially
the agile nature of observation development and iterative

characteristics of the process require an automated flow so
that changes in observation requirements can be propagated
quickly towards actual execution [11]. Furthermore, it is
crucial to protect the client machines from potentially harm-
ful virtual machine bytecode or, potentially worse, binary
code. Still, the highly dynamic nature of the product eval-
uation settings demand an special engineering approach:
runtime structures are constructed directly from the spec-
ification. This technique replaces the transformation and
code generation steps of traditional MDE with a single in-
terpretation step. Code generation in principle transforms a
model into a textual representation which is processable by,
e.g. a compiler. In contrast, model interpretation directly
processes the model and generates executable structures in
memory. This has the main advantage that the model can
be embedded into the runtime system. This emphasizes the
safety of the system and allows for a change of the observa-
tion behavior at runtime, simply by replacing the interpreted
model with a newer version.

4.1. Observation specification

For the specification of observation we developed an ed-
itor based on the Eclipse platform. That editor allows for
an easy composition of an observation specification suitable
for domain experts. Also, it offers the possibility to send the
finished specification directly to a server on the repository
layer which is part of the distribution infrastructure for up-
dating product instances. Figure 4 shows an example of
a graphical observation specification. It denotes the timed
triggering of a hook requesting information about the CPU
performance every ten seconds. This information is aver-
aged (avg symbol) by a processing node and exported via
an export node.

Figure 4. Visual editor screenshot with an ex-
ample specification

Models expressed in the visual language are serialized in
plain XML. This can be parsed by the observation module.
Corresponding to the example specification shown in figure
4, its structure also appears in the XML file that is sent to
the observation module for execution (cf. figure 5).



<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
< i f s l : M o d e l x m i : v e r s i o n =” 2 . 0 ”>

<e l e m e n t s t y p e =” i f s l : T i m e r ” p e r i o d =” 10 ”
u n i t =” s e c o n d s ” />

<e l e m e n t s t y p e =” i f s l : P l a t f o r m H o o k ” name=”
CpuPerformanceHook ” />

<e l e m e n t s t y p e =” i f s l : R o u t e ” end1=” / /
@elements . 0 ” end2=” / / @elements . 1 ” />

<e l e m e n t s t y p e =” i f s l : P r o c e s s i n g N o d e ” name
=” avg ” />

<e l e m e n t s t y p e =” i f s l : R o u t e ” end1=” / /
@elements . 1 ” end2=” / / @elements . 3 ” />

<e l e m e n t s t y p e =” i f s l :XMLExpor tNode ” name=
” Exp or t ” />

<e l e m e n t s t y p e =” i f s l : R o u t e ” end1=” / /
@elements . 3 ” end2=” / / @elements . 5 ” />

< / i f s l : M o d e l>

Figure 5. XML version of observation specifi-
cation

4.2. Observation runtime

The observation module contains a runtime environment
that can execute an OC as specified by the visual model.
Figure 3 shows the configuration process. An observation
specification is parsed and checked for validity. After that,
a set of building blocks is constructed dynamically using a
NodeFactory. The routing unit takes this set of blocks as
input and creates routes according to the specification. Im-
plicitly the export nodes of the network are connected to
the respective communication facility. Finally, the sched-
uler subsystem starts all timers, the only active parts in an
otherwise reactive event-based architecture.

To construct such a network, the event-driven executable
system makes use of the base class FlowNode which real-
izes the basic routing functionality together with the Route
class. As the UML diagram (see figure 6) shows, dynamic
linking of nodes is accomplished by using the FlowNode-
Route-Inlet-Outlet pattern: FlowNodes offer inlet function-
ality by means of a provided interface and a Route can con-
nect to those nodes with a usage relationship with the inter-
face Inlet. For the interface Outlet the reversed relationships
hold. Objects are linked together by means of the inlets and
outRoutes associations.

The UML class diagram in figure 6 depicts also the
classes that represent hooks, processing nodes, collection
nodes, exports and timers. Obviously there is a 1:1 rela-
tionship between elements of the visual language and the
instanciated objects that are linked together by means of the
inherent routing functionality of all objects derived from the
base class. What the picture also shows is the application of

Figure 6. UML class diagram of observation
component building blocks

the strategy pattern [9]. It helps to realize different kinds of
behaviour of ProcessingNodes and CollectionNodes. De-
pending on the type of processing or collection specified,
different strategies can be chosen. This especially reduces
the effort for observation development as only necessary
computations have to be implemented in the observation
module.

Yet, the implementation of hooks proved to be the most
demanding task of observation development as it means to
interface the product at various levels, a task that strongly
depends on documentation and openness of the platform.

There are basically two types of hooks: Platform hooks
which access the host system and are characterized by
mainly platform-specific behaviour, thus the name, and sys-
tem hooks that access the observation module. While the
use of platform hooks for information collection is straight-
forward, system hooks capture events concerning the obser-
vation itself. In the future, this can be used to adapt the ob-
servation to context changes or to establish semantic links
between observed items on multiple levels.

5. Case study

Together with a large Dutch electronics company we
carried out a case-study to test the observation of a con-
sumer electronics prototype. This showed the applicability
of the approach in a world-wide observation scenario that
connected 20 machines spread over 8 countries to a cen-
tral server which collected about 800.000 data items. The
product instances were pre-configured before roll-out. As
expected, changes in the observation requirements of infor-
mation stakeholders demanded for remote changes of the
observation specification which were performed success-
fully several times. The machines continued to capture data
according to a new observation specification.



The data collected during the case-study supported
mostly the assumptions of the development team about
product usage, but also gave new insight on country-specific
usage problems and customer expectations. Regarding the
successful application of the proposed technology and new
insight into product usage it has been decided to continue
with successive experiments on a later version of the ob-
served product prototype.

6. Conclusion & Future work

Regarding the fact that the majority of products are cur-
rently not designed for observation, we are working in the
direction of a design method for self-observing systems. To
provide an intermediate solution for observation integration
we chose model interpretation for maximum flexibility and
agility. Our approach is to specify visually and to execute
the finished specification directly on the product. This em-
phasizes the separation of concerns between domain experts
who are interested in the collection of usage information
and developers who are concerned with the system engi-
neering.

We developed an experimental framework for specifica-
tion and implementation of observation functionality. A
new visual specification language has been introduced to
support domain experts specifying observation behavior. It
proved to greatly simplify the task of product usage data
collection. The language is generic enough to be reused in
different observation contexts. Only minor changes have to
be made to the observation specification runtime environ-
ment in case a new product software implementation plat-
form has to be entered.

The case-study showed that as soon as observation mod-
ules are in place and the specification supports basic mea-
surements of users’ interactions with a product the need for
better semantic linking between observed data arises. So
far, a lot of effort still has to be spent on the post-processing
of captured data. The next step is an annotation of events
with semantic information that tells e.g. about the origin,
conditions and context of such an event. Also this is done
in a structured way, such that the information can be easily
exploited during post-processing using automatic analysis
tools. Another future direction is the collection and incor-
poration of subjective user feedback data into the set of ob-
jective product data. In addition, subjective data can help
to understand the why in user-product interaction. It will
be possible to bind subjective feedback measures to the oc-
curence of certain events which enables a dynamic insight
into the usage process together with background informa-
tion coming directly from the user at the same time.

Acknowledgments

This work is being carried out as part of the “Man-
aging Soft-Reliability in Strongly Innovative Product Cre-
ation Processes” project, sponsored by the Dutch Ministry
of Economic Affairs under the IOP-IPCR program.

References

[1] S. Bly, B. Schilit, D. W. McDonald, B. Rosario, and Y. Saint-
Hilaire. Broken expectations in the digital home. In CHI
’06: CHI ’06 extended abstracts on Human factors in com-
puting systems, pages 568–573, New York, NY, USA, 2006.
ACM Press.

[2] R. Cooper and E. Kleinschmidt. New products: What sep-
arates winners from losers? Journal of Product Innovation
Management, 4, September 1987.

[3] E. den Ouden, L. Yuan, P. J. M. Sonnemans, and A. C.
Brombacher. Quality and reliability problems from a con-
sumer’s perspective: an increasing problem overlooked by
businesses? Quality and Reliability Engineering Interna-
tional, 22(7):821–838, 2006.

[4] M. Diep. Profiling deployed software: Assessing strate-
gies and testing opportunities. IEEE Trans. Softw. Eng.,
31(4):312–327, 2005.

[5] J. Estublier and G. Vega. Reuse and variability in large soft-
ware applications. In ESEC/FSE-13: Proceedings of the
10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Foun-
dations of software engineering, pages 316–325, New York,
NY, USA, 2005. ACM.

[6] E. Evans. Domain Driven Design. Addison-Wesley, 2004.
[7] D. Frankel. Model Driven Architecture: Applying MDA to

Enterprise Computing. John Wiley & Sons, Inc., New York,
NY, USA, 2002.

[8] M. Funk, P. van der Putten, and H. Corporaal. Specification
for user modeling with self-observing systems. In Proceed-
ings of the First International Conference on Advances in
Computer-Human Interaction, 2008.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1994.

[10] K. Kabitzsch and V. Vasyutynskyy. Architecture and data
model for monitoring of distributed automation systems. In
1st IFAC Symposium on Telematics Applications In Automa-
tion and Robotics, Helsinki, 2004.

[11] J. Karsai, G.; Sztipanovits. A model-based approach to self-
adaptive software. Intelligent Systems and Their Applica-
tions, IEEE [see also IEEE Intelligent Systems], 14(3):46–
53, May/Jun 1999.

[12] A. Kobsa. Generic user modeling systems. User Modeling
and User-Adapted Interaction, 11(1):49–63, Mar. 2001.

[13] J. Kort and H. de Poot. Usage analysis: combining log-
ging and qualitative methods. In CHI ’05: CHI ’05 ex-
tended abstracts on Human factors in computing systems,
pages 2121–2122, New York, NY, USA, 2005. ACM Press.

[14] B. Selic. The pragmatics of model-driven development.
Software, IEEE, 20(5):19–25, 2003.


