
   Chapter 15   
 Interactive Statistical Modeling with XGms       

     Jean-Bernard   Martens          

  Abstract    This chapter intends to clarify how statistical models can be used in the 
interactive analysis of experimental data. It is discussed how maximum likelihood 
estimation can map experimental data into model parameters, and how confidence 
intervals on these parameters play a key role in drawing inferences. One frequent 
inference is whether or not similar data collected in two different experimental 
conditions require a significant change in model parameters, hence indicating that 
the conditions are not equivalent. Another frequent inference is whether a simple 
or a more complex model needs to be adopted for describing observed data. It is 
argued that the user, who has insight into the problem underlying the data, should 
be allowed to play an active part in selecting models and specifying the inferences 
of interest. Hence, the need for interactive visualization is identified and the program 
XGms that has been developed for this purpose is discussed. The fact that the 
statistical models implemented within XGms are geometrical in nature simplifies 
their visualization and interpretation.    

Keywords: Statistical modeling, Interactive modeling, Model visualization, Data 
analysis

  15.1 Introduction  

 There is a widespread interest in establishing and understanding relationships 
between variables, where a variable is defined as any measurable aspect that can 
take on different values. Sometimes this interest is motivated by sheer curiosity, 
in which case it can suffice to establish whether or not there is a relationship 
between the variables of interest. In industrial or scientific settings, however, the 
interest is often triggered by practical or theoretical necessity, and more quantitative 
descriptions of relationships are usually required. 

 An established way of testing and describing relationships between variables is 
by means of statistical analysis. Statistics can aim at drawing inferences about 
whether or not variables are related, such as in the case of a T-test or chi-squared 
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test  [13] , or can aim at estimating quantitative relationships between observed 
data, such as in the case of regression. In order to argue the need for more intuitive 
interactions in statistical data analyses, we highlight a number of characteristics of 
current practice. 

 First, a statistic is a single number derived from the data, and detailed characteristics 
of the data, such as individual data points that do not satisfy a global relationship, 
can be obscured by such statistics. Statistics should therefore be used primarily to 
verify effects that can also be visualized through other means, such as with scatter 
or parallel plots  [20]  or confidence intervals  [12 ,  19] . Therefore, most popular statisti-
cal packages, such as SPSS, Statgraphics, DataDesk, etc., offer interactive visualiza-
tions for both exploratory data analysis (i.e., the stage in which hypotheses are 
construed and statistical methods are selected) and for illustrating the results of sta-
tistical analyses. The required analyses themselves however most often need to be 
specified using command-line entry or menu selection, which requires a substantial 
familiarity with the available methods, their properties and their limitations. 

 Second, in order to compress a large set of data into a single number (or a few 
numbers), assumptions need to be made about the data being interpreted. For example, 
the widely used analysis of variance (ANOVA) assumes that the observed data is 
normally distributed across conditions, with varying average, but constant variance. 
Being able to rapidly switch between alternative assumptions, such as changing to 
non-constant variance, and to adequately visualize the impact of such changes, is 
essential for gaining insight into the validity of such assumptions. Currently, such 
an exploration of alternatives cannot be performed in an intuitive way. Selecting 
alternative statistical methods and finding the relevant information in the wealth of 
textual and graphical output provided by these methods is what is now most often 
required. This is a slow and non-intuitive way of working. 

 Third, a plethora of statistical methods have been developed in order to cope with 
alternative data characteristics (such as whether the data is discrete or continuous, 
interval or ordinal) and with different hypotheses (such as, testing for equal averages 
or variances). Because of this complexity, a statistical expert may be needed to help 
select the most adequate method. Since this is seldom feasible, most users tend to 
restrict themselves to the most simple and best-known methods, even in cases where 
such methods are clearly not the best choice (or even simply inappropriate). 
Although the underlying mathematical models for many of the existing methods are 
more closely related than most people seem to be aware of, end users are not able to 
perceive these communalities. A better visualization of the models being available 
for approximating the data can potentially lead to choosing more appropriate 
methods, which in turn is likely to result in better abstractions from the data. 

 In this chapter, we propose that interactive visualization can help to make statistical 
data modeling more intuitive and appropriate. More specifically, we propose to 
enable the user to interactively control different aspects of a general statistical model 
in order to explore a range of alternative model descriptions, rather then having to 
select from a list of available statistical methods. Moreover, we propose an output 
visualization that is closely related to this general model so that the consequences of 
alternative model choices can be easily appreciated. We also propose that the user, 
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who has insight in the problem underlying the observed data, should be allowed to 
play an active role in the model estimation process by providing reasonable guesses, 
hence avoiding local optimizations. Such interactive feedback and feed-forward is 
deemed crucial when developing an understanding of observed data. 

 In Sect.  15.2  of this chapter, we introduce some fundamentals of statistical 
modeling, including maximum likelihood estimation and (asymptotic) confidence 
intervals. In Sect.  15.3 , we discuss a class of geometrical models that are both intuitive 
and flexible, i.e., able to model data with very different characteristics. The majority 
of this section is dedicated to illustrating how the model can be used to address a 
diversity of statistical problems, such as ordinal and linear regression, factor analysis 
and multidimensional scaling. In Sect.  15.4 , we describe the interface of XGms, the 
interactive visualization program that implements these geometrical models. We 
end up by identifying important contributions and aspects for future development.  

  15.2 Statistical Modeling  

  15.2.1 Single Data, Single Model 

 A statistical model describes the  probability  of any possible outcome of an experiment. 
More precisely, x let be the vector of observations and let  P ( x ;  q ) be the probability 
of this observation vector in case the vector of model parameters is equal to  q . Once 
the actual observation   x   is known,  P ( x ;  q ) can be viewed as a function of the parameter 
vector  q . This function is called the  likelihood function  (LF) for the model, given 
the observation vector  x . Let us illustrate this concept by means of a simple example. 
Suppose that the experiment consists of  N  independent observations of a binary 
output, and that the number of positive (1) and negative (0) outcomes is  n  and 
 N  −  n , respectively. The outcome of such an experiment could be modeled by a 
binomial distribution with probability  p  for a positive outcome, i.e.,
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−
!

( , ; ) (1 )
!( )!

n N nN
P n N n p p p

n N n
   (15.1)   

 This corresponds to assuming that all observations are performed independently 
and that  p  is constant across observations. Since  n  and  N  are known from the obser-
vation, the LF only depends on the model parameter  p . 

 From all possible models, we want to select the one that best describes our actual data 
vector  x . According to the  maximum likelihood  (ML) principle, the optimum choice 
q     for the parameter vector  q  is such that the likelihood function  P ( x ;  q ) is maximized. 
Since probabilities are often exponential functions, it is customary to maximize 
the (natural) logarithm of the LF, i.e.,  L ( q ) = log  P ( x ;  q ), as a function of  q . Once 
the ML parameter estimate   q̂   is known, then we can construct the log likelihood 
profile (LLP) Λ( q ) = 2[ L (q    )  − L (q ̂) ]. In case of our simple binomial model, the log 
likelihood function (LLF) is equal to
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 Maximizing this function with respect to the parameter  p , i.e., 
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 results in the optimal ML estimate   ˆ /p n N=   , and a LLP equal to
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 This LLP is plotted in Fig.  15.1a  for two possible experimental observations with 
the same optimal ML estimate   p̂ = n / N  , but different total number  N  of observations. 
Note that the minimum becomes more pronounced as the number of observations 
 N  increases, and that the parabolic approximation to the LLP (to be defined below) 
also improves.                        

 Intuitively, we expect that more extensive data sets, with a higher number of 
observations, lead to more accurate predictions for the model parameters than smaller 
data sets. Within statistical modeling, this is formalized through the concept of 

 Fig. 15.1   Log likelihood profiles and their parabolic approximations for a binomial model with one 
(probability) parameter  p . Figure ( a ) shows the model for two different observation vectors with 
identical ML estimate, p̂ =0.2 i.e., (2, 8) (N = 10) and (20, 80) (N = 100). An enlarged view for 
observation (20, 80) is shown in Fig. (b). The vertically drawn lines in this figure indicate the exact 
95% confidence interval for the model parameter p. The dashed and dotted vertical lines show two 
different, asymptotically correct, approximations. The horizontal line is the c2

0.05(1) = 3.84 boundary 
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 confidence intervals  (CIs). More precisely, we expect the ML parameter estimate   q̂   
to vary slightly in case of repeated experiments. This is captured by the statistical 
nature of the model, since a model with constant parameter vector  q  will give rise 
to different observations  x  on successive (simulated) trials. Without going into 
detail (see  [14 ,  17]  for more in-depth treatments), a 100(1 − α)% CI is a region in 
parameter space, surrounding the ML estimate   q̂  , such that the “true” model parameter 
vector  q  is expected to fall within this region with an estimated probability of 
100(1 − α)% (the most frequently adopted choice is 95%, or α = 0.05). The 
hypothesis that a model with assumed parameter vector  q   

 o 
  describes the data can 

then be rejected with 100(1 − α)% confidence if this vector falls outside the 
100(1 − α)% CI. Exact determination of these CIs is only possible in relatively 
simple special cases, such as the binomial model discussed above  [6] . The exact 
95% CI for the parameter  p  in case of an (20 ,  80) observation is indicated by the 
drawn vertical lines in Fig.  15.1b . Since  p  

o
  = 0 . 3 falls outside of the 95% CI, we can 

reject the hypothesis that the probability  p  underlying our observation is  p  = 0 . 3 
(we can for instance not reject the hypothesis that  p  = 0 . 25). 

 The popularity of ML estimates can be largely attributed to the fact that there exist 
approximations to the CIs that can be derived in very general cases and that are asymp-
totically correct, i.e., in case the number of observations is (infinitely) large. Provided 
the number of parameters in the model is  k  (this is the number of elements in the param-
eter vector  q ), then the “likelihood ratio” approximation  [14]  to the CI is obtained by

   ( ) 2 ( )a kq < cΛ   
 (15.5)   

 where    c2
a (k)  is such that the area from  c2

a (k)    to infinity under the chi-squared dis-
tribution curve with  k  degrees of freedom is equal to α (which means that the area 
under the curve between 0 and    c2

a (k)  is equal to 1 − α). These chi-squared values 
are tabulated in almost all textbooks on statistics, e.g.,  [4 ,  13] . The “likelihood ratio” 
approximation to the 95% CI for the parameter  p  in the binomial model of Fig. 
 15.1b  is indicated by the dotted vertical lines. The boundary values for the interval are 
obtained by intersecting the LLP Λ( p ) with the horizontal line at height   c2

0.05 (1) = 3.84.   
Note that the asymptotic CI (ACI) is (slightly) smaller than the true CI. 

 In case the LLP around the optimum ML estimate   q̂   can be approximated by a 
parabolic function, which is guaranteed to be the case when the number of observa-
tions is large (due to the central limit theorem), then the CI can be shown to be 
approximately equal to an ellipsoid with expression

   aq - q q q q c− = 2ˆ ˆ ˆ( ) ( ) ( ) ( ),. .t I k    (15.6)   

 where the  k  x  k  matrix of the negated second derivatives to the log likelihood func-
tion, i.e., 
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 is called the observed  Fisher information matrix   [14] . For the binomial model with 
one parameter  p , this matrix reduces to a single number
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 which corresponds to a parabolic or “Wald” approximation to the LLP, i.e.,
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 The “Wald” approximation to the 95% CI for the parameter  p  in the binomial model 
is indicated by the dashed vertical lines in Fig.  15.1b . The boundary values for the 
interval are obtained by intersecting the parabolic approximation   Λ̂(p)   to the LLP 
with the horizontal line at height   2

0.05 (1) 3.84c =   .  

  15.2.2 Multiple Data and/or Models 

 In the above discussion we have assumed that there is only one observation vector 
 x  and one model of interest, with model parameter vector  q . In practice, the situation 
is usually more complex in at least two respects. 

 First, we often have different observation vectors  x  
1
 ,…, x  

 K 
  that correspond to 

different experimental conditions, and the question of interest is whether or not the 
experimental conditions have a significant effect on the observations. In order to 
compare such observations, we can model them using an identical model with varying 
parameters. More specifically, if the observation vectors  x  

1
 ,…, x  

 K 
  are modeled by 

different ML estimated parameter vectors   q̂
1
,…,q̂

K
   within a common model, then the 

statistical question (or hypothesis) of interest is whether or not the model parameters 
  q̂   

i 
 and q̂

j
     , or a selected subset of them, are significantly different. Since many dif-

ferent comparisons are possible, interactive visualization can be used to select only 
the interesting ones, and to adequately visualize the comparison results. 

 Second, we might be interested in testing different models, of increasing 
complexity, on the same observation vector    x . If the first model has  kq    

  parameters, 
and the second model is an extension of the first one with  k  

 ϕ   >  k  
 q 
  parameters, then 

the latter model is expected to have a higher log likelihood (LL). The statistical 
question of interest is knowing whether or not this increase in LL is sufficiently 
substantial to warrant the increase in number of parameters, in which case the more 
complex model should be preferred. If this increase in LL is not substantial enough, 
then the simpler model should be preferred. Exploring such alternative models in 
an efficient way will be another objective of using interactive visualization. 

 In order to address the first aspect, we will need a slightly more general formulation 
of ML estimation than the one provided before. More specifically, we will need to 
know how to determine CIs for subsets of parameters. Let us divide the parameter 
vector  q  = ( q  

1
 ,  q  

2
 ) into two subsets of parameters (with  k  

1
  and  k  

2
  components, 

respectively, so that  k  
1
  +  k  

2
  =  k ) and rewrite the LLP as Λ( q ) = Λ( q  

1
 ,  q  

2
 ). It has been 

demonstrated  [14]  that the LLP for the “wanted” parameter vector  θ  
1
  equals
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   Λ(q1) = Λ(q1,q̂̂2(q1)),,   (15.10)   

 where   q̂̂
2
(q1)   is the “unwanted” parameter vector that maximizes Λ( q  

1
 ,  q  

2
 ) for a 

fixed value of  q  
1
 . This log likelihood profile tends to a c 2 -distribution with  k  

1
  

degrees of freedom for large data sets, so that an 100(1 − α)% ACI for the subset 
 q  

1
  of “wanted” parameters can be obtained by setting

   
2

1 1( ) ( )kaqΛ < χ    (15.11)   

 Alternatively, a parabolic approximation  [14] 

        Λ̃ (q1) = (q1–q̂1) 
t . (I
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21) . (q1–q̂1) (15.12)

 to the log likelihood profile can be obtained, where the matrices  I  
 ij 
 , of size  k  

 i 
  x  k

   j 
 , 

for  i,j  = 1,2, are derived by subdividing the original observed Fisher matrix of size 
 k  x  k , see equation (15.7), in sub-matrices, i.e.,
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 We now demonstrate how this result can be used to derive an ACI for the differ-
ence between model parameters. Assume that the same model, with different 
model parameters  q  

 i 
  and  q  

 j 
 , is used to model the observation vectors  x 

  i 
  and  x  

 j 
 , 

respectively. If both experiments are performed independently, then the probability 
for the combined observation vector ( x  

 i   
,   x 

  j 
 ) is the product  P ( x  

 i 
  , q  

 i 
 ).  P ( x 

  j 
  , q

   j 
 ), so 

that the LLF is simply

     
q q q q= +( , ) log ( ; ) log ( ; );i j i i j jL P Px x

    (15.14)

 where the probability function  P ( x ;  q ) is identical for both observation vectors. The 
following coordinate transformation

     
,

2
i j

ij i ij ij

q q
d q r d

−
= = +

   
(15.15)
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q q
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 can be used to express this LLF  L ( q  
 i 
  , q  

 j 
 ) =  L (d  

ij 
  , r  

 ij 
 ) in terms of two new parameter 

vectors (d 
 ij 
  , r  

 ij 
 ). The procedure in the previous paragraph tells us how to derive an 

ACI for the difference vector d 
 ij 
 . We can reject the hypothesis that both model vec-

tors q   
 i 
  and  q  

 j 
  are equal if the zero vector lies outside of this ACI. The procedure is 

easily adapted in case we only want to compare a subset of the model parameters. 
More precisely, by further subdividing the difference vector δ

  ij
 
 
 = (δ 

 ij 
 (1) ,  δ

  ij 
 (2)) into 

two subsets, we can apply the above procedure to create an ACI for the difference 
vector δ 

 ij 
 (1) with the parameters of interest (removing both δ 

 ij 
 (2) and  q  

 ij 
  as unwanted 

parameters). 
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 We now address the second aspect mentioned above, i.e, that of selecting 
between increasingly complex models for the same observation vector x. More 
specifically, assume that the LLFs are  L  

 q 
 ( m ) = log  P  

 q 
 ( x ;  q ) for the simpler 

model with  k  
 q 
  parameters, and  L  

 f 
 ( f ) = log  P

   f 
  ( x ;  f ) for the more complex 

model with  kf  parameters. The probability functions are now different, since 
the two models are different. It has been demonstrated  [17]  that the log likeli-
hood difference (LLD)

     ˆˆ2 [ ( ) ( )]· L Lf qf q∆Λ = −     (15.16)

 where    q̂    and   f̂   are the optimal ML estimates for the model parameters, is asymp-
totically c 2 -distributed with  k  

 f   − k   q 
  degrees of freedom. Hence, only in case this 

LLD exceeds the threshold   c2
a (kf–kq)   

 do we consider adopting the more complex 
model description over the simpler one. Note that, in practice, there frequently arise 
situations where we prefer to stick to a simpler model that is easier to interpret, 
despite the statistical argument to the contrary.   

  15.3 Geometrical Models for Statistical Data Analysis  

 Now that we have established how parameters of statistical models can be esti-
mated from observations and know how ACIs can be used to draw inferences 
between alternative models, or model parameters, we can direct our attention to a 
specific class of statistical models. 

 According to the principle of  homogeneity of perception   [7] , different variables 
associated with a set of objects are often related, and the relationships may be visu-
alized by linking them to geometrical properties of a stimulus configuration. More 
specifically, distances between points representing objects can be related to 
observed (dis)similarities between these objects, while coordinates of object points 
along different axes can be associated with measurements on different attributes. 
Such models provide a geometrical interpretation for popular statistical methods 
such as multiple regression (MR) and multidimensional scaling (MDS) [  1 ,  3 ,  7 ,  11] . 
In case of MR, part of the model (i.e., the object positions) is a priori provided, 
based on some theoretical or physical understanding of the objects of interest. In 
case of MDS, these object positions are estimated from the experimental data. 

 In order to clarify the above concepts, we illustrate part of the geometrical model 
that is implemented within our program XGms in Fig.  15.2 . We assume that  N  dif-
ferent objects, represented by object positions x 

i
 , for  i  = 1,…, N , have been assessed 

on  K  
 a 
  different attributes, and that measurements have been repeated  R  

 a 
  times, so 

that  A  
 kij  

 is the  j -th measurement, for  j  = 1,…, R  
 a 
 , of object  i  on attribute  k , for 

 k  = 1,…, K  
 a 
 . According to the model, the object configuration {x 

 i 
 ;  i  = 1,…, N } is 

shared by all attribute measurements. The mapping of an object position x
  i 
  to a 

response  A  
 kij 

  for attribute  k  depends on the prediction vector  a  
 k 
 , the proportionality 

factor  f
   k 
 , the offset factor  c  

 k 
 , the noise standard deviation  σ  

 ak  
 and the possibly non-

linear but monotonically increasing response function  R
   ak  

(·), for  k  = 1,…, K  
 a 
 . How 
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 Fig. 15.2    Geometrical model relating object positions x 
 i 
  to measurements  A

   kij 
  for variable  k  on 

object  i , during repetition  j . The objects within an experiment are described by positions x
 i
 , while 

the attribute vector a 
 k 
 , regression coefficients  c  

 k 
  and  f  

 k 
 , and response mechanism  R   αk 

  describe the 
mapping to the variable measurements on these objects. The response variability in successive 
trials  j  around the predicted mean value   Â

ki
   for variable  k  on object  i  is modeled by a noise source 

 n  
 ak 

  with (constant) standard deviation  σ   αk 
   

  Fig. 15.3    Geometrical interpretation of attribute predictions. If x 
 ki 
  is the orthogonal projection of 

the vector x 
i
  onto the axis with direction a 

 k 
 , then the inner product definition implies that  <  a 

 k 
  , x 

 i 
 > =  

<  a
  k 
  , x 

 ki 
 > . The projected vector can be expressed as x 

 ki 
  =  x  

 ki 
  · a

  k 
   / || a 

 k 
  ||  

2
  since it is aligned with the 

vector a 
 k 
 . The numbers  x  

 ki 
  and  x  

 kj 
  can be interpreted as coordinates on the axis with direction a 

 k  
 

for two different objects  i  and  j        

object position x
  i 
  is mapped into an (average) score  x  

 ki 
  for object  i  on variable  k  is 

illustrated in Fig.  15.3 . When the same objects are scored very differently on 
different attributes, then this is reflected within the model as attribute vectors a 

 k 
  

with different orientations. Such distinct orientations are obviously only possible in 
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case the dimension  n  of the space exceeds one. Note that the model in Fig.  15.2  is 
statistical in nature because of the inclusion of the (Gaussian) noise sources  n

ak
 . 

For a detailed mathematical description of how the probabilities of observed data 
values  A

kij
  are related to the model parameters, we refer to [  10 ,  11] .         

 The proposed geometrical model is especially flexible in how object positions are 
mapped into attribute measurements. In this way, observed data with very different 
characteristics can be handled within a common model, and different alternative 
assumptions about the data characteristics can be easily compared. More specifically, 
the response function  R  

 ak 
 ( · ) can be linear in case of  interval  (or metric) data, but is 

also allowed to be a non-linear, monotonically increasing function, in case of  ordinal  
(or non-metric) data. Both power-like functions  [15]  and monotonically increasing 
spline functions  [16]  are supported. The response function can optionally be quan-
tized, i.e., limited to a discrete set of output values, in case of  discrete  data, such as 
in case of a measurement variable with integer instead of real values  [10] . Variables 
with different ranges and accuracies can be handled by adapting the linear regression 
coefficients  c

   k 
  and  f  

 k 
  and the noise standard deviations  σ  

 ak 
 . 

  15.3.1 Example 1. Binary Data 

 We start with a simple illustrative example where the stimulus configuration is 
one-dimensional, i.e., each condition under test is represented by a single number 
 x  

 i 
 , for  i  = 1,…, N . We assume that a constant number of  R  

 a 
    = 100 binary (positive/

negative) measurements are performed in each of  N  = 19 conditions, and that the 
fraction of negative outcomes in condition  i  is  p  

 i  
 =  i *0 . 05, for  i  = 1,…,19. Since the 

same binary measurement is performed in each condition, the number of measured 
attributes is  K  

 a 
    = 1. Such data can be analyzed using the model of Fig.  15.2  by 

adopting a nonlinear mapping  R  
 a 
  
1
 ( · ) that quantizes the output to two levels, repre-

senting the positive and negative outcomes. A small fraction of negative outcomes 
in case  i  should map to an average prediction   ̂A

li
   well above the quantization thresh-

old of the nonlinearity (corresponding to a small probability of generating a value 
below the threshold), while an equal fraction of negative and positive outcomes 
should map to a position close to the quantization threshold. 

 The estimated positions for the different conditions are plotted in Fig.  15.4 . 
For reasons explained in  [10] , the stimulus configuration is always centered 
around the origin and its variance is normalized. The estimation program determines 
that the offset  c

 1
 in the model is equal to the threshold value of the quantizing 

nonlinearity  R  
 a 
  
1
 ( · ), which defaults to 0, and that the scale factor  f  

1
  is equal to 

0 . 864 times the noise standard deviation  σ   α   1
 , which defaults to 1. This implies 

that the standard deviation of the noise on the stimulus configuration in Fig.  15.4  
equals  σ   a   1  

/  f  
1
  = 1 . 157.  

 During the ML estimation, only the stimulus configuration is visualized, because 
calculating ACIs at each iteration step would significantly slow down the estima-
tion process. The ACIs are moreover only required when inferences need to be 
drawn from the data. Therefore, Fig.  15.4  is only generated in response to an 
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  Fig. 15.4    Estimated stimulus positions for binary data with a constant decrease in observed fraction 
 p  of positive responses. The intervals equal   1/ 2   times the 95% CIs on the estimated positions. 
The dashed curve is proportional to the logarithm of the odds ratio log((1 −  p )  / p )       
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explicit user request. Although extensive statistical tests (following the ML principles 
discussed in the previous section) can be reported textually, the figure being pre-
sented is a deliberate approximation that is much easier to interpret. Indeed, if all 
 N ( N  − 1)/2 = 171 stimulus distances  x  

 i 
    −  x 

  j 
  would need to be reported and checked 

for statistical significance, a long list that is difficult to inspect would be the result. 
Of course, we could prune this list by only reporting the results for neighboring 
stimulus positions. Instead, we have adopted an approximate graphical rendering 
that has recently been promoted by several authors [ 12 ,  19] . It has been shown that, 
provided the standard errors on the estimated positions are approximately constant 
(an assumption that is reasonably satisfied in our case), we can perform a simple 
visual inspection in order to identify statistically significant differences. More 
precisely, if we render    1/ 2   times the estimated 95% CI around each position, then 
non-overlapping intervals are equivalent to statistically significant differences. 
Note for instance that observed proportions 0 . 05 and 0 . 15 are significantly different 
according to this criterion (which is in agreement with both the exact Fisher test  [5] , 
with  p  = 0 . 0317, or the approximate  c   2  -test  [13] , with  p  = 0 . 018), while observed 
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proportions 0 . 15 and 0 . 25 are not (which is in agreement with both the exact Fisher 
test, with  p  = 0 . 111, or the approximate  c   2  -test, with  p  = 0 . 077). Note that the inter-
vals between stimulus positions  x

   i 
  can be compared on a linear scale (because of 

the assumption of constant noise variance), which is not allowed for the observed 
fractions  p  

 i  
 themselves. This is one of the purposes of building geometrical models. 

If the noise would be logistically rather than normally distributed (which is only a 
minor difference), then theoretical considerations lead to the conclusion that the 
stimulus configuration should be proportional to the logarithm of the odds ratio, 
i.e.,  x  

 i    
α  log((1  − p  

 i 
 )/ p

   i 
 )  [6] . Figure  15.4  shows that this is also a good approxima-

tion in case of a Gaussian noise model.  

  15.3.2 Example 2. One-Dimensional Regression 

 Linear regression  [4]  is undoubtedly the most popular method for studying associa-
tions between independent and dependent variables when the latter variable is 
continuous and metric. More specifically, linear regression tests whether or not 
there is evidence for a linear relationship between both variables. The model in Fig. 
 15.2  can simultaneously test the linear regression between one independent varia-
ble, assigned to the positions  x  

 i  
, for  i  = 1,.., N,  and multiple ( K  

 a 
 ) dependent variables. 

In order to keep the discussion simple we will restrict ourselves to the simple case 
of only one dependent variable. More specifically, we will consider example data 
from Table 24.2 in reference  [4] , which is reproduced in Table  15.1 .     

 Table 15.1    Measured concentration of chlorine in a 
product as a function of the number of weeks after 
production (Reproduced from  [4] , Table 24.2)  

 Weeks  Chlorine concentration 

 8  0.49, 0.49 
 10  0.48, 0.47, 0.48, 0.47 
 12  0.46, 0.46, 0.45, 0.43 
 14  0.45, 0.43, 0.43 
 16  0.44, 0.43, 0.43 
 18  0.46, 0.45 
 20  0.42, 0.42, 0.43 
 22  0.41, 0.41, 0.40 
 24  0.42, 0.40, 0.40 
 26  0.41, 0.40, 0.41 
 28  0.41, 0.40 
 30  0.40, 0.40, 0.38 
 32  0.41, 0.40 
 34  0.40 
 36  0.41, 0.38 
 38  0.40, 0.40 
 40  0.39 
 42  0.39 
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 The model of Fig.  15.2  describes linear regression between the dependent vari-
able  A  

1
  
 ij   

(observed chlorine concentration within a medicine) and the independent 
variable  x  

 i  
 (number of weeks since production) in case the response function is 

linear, i.e.,  R  
 a 
  
1
 ( A ) =  A  (with inverse   T

a1
(A) = R–1

a1 
(A) = A ).  Within the program 

XGms, the result of the regression is presented in a scatter plot, where the regressed 
values   Â

1i 
= c

1
+ f

1 
.x

i
   are used as coordinates along the horizontal axis, and the 

transformed measured values  T  
 a 
  
1
 ( A  

1   ij  
) are used as coordinates along the vertical 

axes (see Fig.  15.8 ). In case of linear regression, the data points should align along 
the diagonal line that is included as a visual aid. An alternative would be to plot 
residuals   T

a1
(A 

1   ij  
)– Â

1i 
    [4]  instead of observed measurements  T  

 a 
  
1
 ( A  

1
  
 ij  
) along the ver-

tical axis. In order to assess the goodness of fit, two lines that run parallel to the 
diagonal at a distance of two times the estimated noise standard deviation  σ   a 

  
1
  are 

also included. In case of an adequate model fit, approximately 95% percent of the 
data points should fall in between these oblique lines. In case of our data set, a 
reasonable model fit was observed, but with some systematic deviations. In order 
to complement the visual impression, the user can request more detailed informa-
tion about the regression. The result is presented in both graphical and textual form. 
In the graphical output, the 95% ACI for the linear regression coefficient  f  

1
  is plot-

ted. Since zero was outside this confidence interval, it could be concluded that there 
was evidence for a linear relationship. The complementary textual output contains 
a complete Analysis of Variance (ANOVA). Since there were repeated measures, 
ANOVA could also perform an F-test for the lack-of-fit  [4] . This test, which is very 
often omitted, establishes whether or not there are variations within the dependent 
data that are not explained by the linear regression. The result  F (16,26) = 5.201
( p  = 0.00011)  >  2.052( p  = 0.05) indeed indicates that there is a lack of fit. We 
discuss two options for how to (interactively) obtain more insight into this deviation 
from a linear regression.        

 The first option is to perform non-linear instead of linear regression. Within the 
model of Fig.  15.2 , this corresponds to including a nonlinear response function  R  

 a 
  
1
 . 

Increasingly complex response functions can be created, up to the point where 
increasing the number of parameters no longer contributes significantly to improv-
ing the regression. The LLD ∆Λ of equation (15.16) can be used to judge signifi-
cance, since the XGms program can be requested to compare the current model 
with a previously stored model at any time during the interactive session. Two kinds 
of nonlinear transformations are supported by XGms, power-like transformations 
with up to 3 parameters, and monotonic spline transformations with up to 5 internal 
knot points, which corresponds to 6 parameters  [10] . In both cases, only the first 
two parameters add significantly to improving the (nonlinear) regression. The opti-
mal power-law and spline transformations are both presented in Fig.  15.5a . The 
optimal nonlinear transformation is also displayed during the interactive visualiza-
tion (see Fig.  15.8 ), so that the observer gets a visual impression of it (for instance 
useful in judging the deviation from linearity).  

 The second option for analyzing the non-linearity is to compare the independ-
ent data with the optimal linear predictor. Within the model of Fig.  15.2 , this 
corresponds to MDS optimization of the configuration  x  

 i 
  based on the observed 
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data, and to plotting the optimized configuration as a function of the independent 
variable. The result of this MDS analysis is shown in Fig.  15.5b . As already 
observed in the previous section, the MDS stimulus configuration is geometrically 
(i.e., linearly) related to the dependent variable in case there is no output non-
linearity. The observed relationship in Fig.  15.5b  hence indicates which transfor-
mation needs to be applied to the independent variable (the weeks since production) 
to have an approximate linear effect on the dependent variable (the chlorine 
concentration). The difference with the first method, where the transformation 
was applied to the dependent variable, is that the second method determines the 
transformation that is required on the independent variable. The model in Fig. 
 15.2  does not allow for a transformation at this stage (i.e., on the scores  x  

 ki 
 , before 

they enter the linear regression). Nevertheless, the model can be used to find a 
suitable approximation. Indeed, by keeping the optimized MDS configuration 
fixed while changing the dependent data to what was originally the independent 
data (i.e., the weeks since production), one can apply the regression method of 
the previous section to find an optimum non-linear transformation on the inde-
pendent variable. The optimum two-parameter power-law transformation derived 
in this way is also shown in Fig.  15.5b .  
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  Fig. 15.5    Figure ( a ) shows optimized power-law and monotonically increasing spline transfor-
mations on chlorine concentrations. Figure ( b ) is an optimized (MDS) stimulus configuration with 
approximate linear relationship to the dependent variable (chlorine concentration), plotted as a 
function of the independent variable (weeks since production). The drawn line is an approximate 
power-law transformation with two parameters on the independent variable       
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  15.3.3 Example 3. Multiple Regression and Factor Analysis 

 The simple case treated in the previous example, where only one independent vari-
able characterizes the objects under study, has its obvious limitations. In practice, 
the objects of interest will often vary in multiple aspects and the purpose of an 
experiment may be to establish a suitable compromise between conflicting 
attributes. This requires establishing how one or more dependent variables are (lin-
early or non-linearly) related to a number of independent parameters. With refer-
ence to the model in Fig.  15.2 , this means that each object  i  under study, for 
 i  = 1,…, N , is characterized by a vector  x  

 i 
 , the elements of which are the independ-

ent variables. For these objects, one or more dependent variables may be measured. 
We will illustrate this case by an example where the perceived quality of images 
degraded by noise and blur is modeled [  8 ,  10] . All combinations of four levels of 
blur with a binomial kernel and four levels of Gaussian additive white noise were 
applied to create 16 different processed images from an original image. Seven sub-
jects rated the perceived quality of the images. All images were presented  R  

 a 
   
 
 
 
 = 4 

times, in random order, to each of the subjects, resulting in 16 × 4 = 64 quality 
scores per subject. Integer scores between 0 and 10 were used by the subjects to 
express their judgments. 

 The multiple regression (MR) vectors ( f  
 k 
 · a  

 k 
  in the notation of Fig.  15.2 ) that 

describe the quality judgments of the individual subjects are plotted as dotted vec-
tors in Fig.  15.6 . The 4 × 4 stimulus configuration is square because the blur and 
the noise are assumed to be independent characteristics. For only one of the seven 
subjects was there evidence that nonlinear regression was significantly better than 
linear regression, so that linear regression was adopted for all judgments. Note that 
the 95%-confidence ellipses on the regression vectors (which are scaled by a factor 
of   1/ 2    in order to facilitate interpretation) indicate that some vectors have approxi-
mately the same orientation, while others have significantly different orientations. 
Establishing the number of independent factors underlying a set of attribute judgments 
is usually accomplished through mathematical procedures such as factor analysis. 
However, the interactive visualization within XGms also allows to gather evidence 
for which attributes share a common factor. More specifically, the number of 
parameters in the model of Fig.  15.2  can be reduced by letting some attribute vec-
tors share the same orientation (i.e., by equating normalized attribute vectors, e.g., 
 a  

1
  =  a  

2
 ). Note that such vectors can still have unequal lengths (since  f  

1
  need not be 

equal to  f  
2
 ). If two attributes share the same orientation then the number of degrees 

of freedom in the model is reduced (by one in the case of a two-dimensional con-
figuration), at the cost of a decrease in the log likelihood of the model.

         The LLD of equation (15.16) can be used to decide whether or not this decrease 
is sufficiently large to prefer the more complex model, with unequally oriented 
attribute vectors, over the simpler model, with equally oriented attribute vectors. 
Within the interactive visualization program XGms, the user can select which 
attribute orientations to merge. For the specific data set considered in this example, 
an iterative procedure where the two most closely related orientations (i.e., with 
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smallest mutual angle) are merged in each successive step, leads to the conclusion 
that there is statistical evidence for only two groups of quality vectors (i.e., two 
independent factors). The resulting dashed vectors are also shown in Fig.  15.6 . The 
vectors in a group share the same orientation, but have different lengths. The obvi-
ous interpretation for these two groups is that one group (of four subjects) attributes 
more relative weight to blur than to noise in comparison to the other group (of three 
subjects). It is of course possible that we are not interested in individual or group 
quality judgments, but only in the average quality direction across subjects. This is 
easily accomplished by letting all vectors share the same orientation ( a  

1
  = … =  a  

7
 ). The 

resulting average orientation for quality corresponds to the drawn vector in Fig.  15.6 .  

  15.3.4 Example 4. Multidimensional Scaling 

 The original motivation for developing the XGms program was to create an interactive 
visualization for multidimensional scaling (MDS). Within the model of Fig.  15.2 , 
MDS refers to cases where the stimulus positions  x  

 i 
  are estimated, together with 

the other parameters, from the observed data  A  
 kij 

 . We can for instance use the data 
from the previous example to perform MDS. The resulting optimum 2D configuration 

 Fig. 15.6    MR model for quality judgments on images with blur and noise  
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is shown in Fig.  15.7 , together with the regressed quality vectors (both the indi-
vidual and group quality vectors, as well as the averaged quality orientation). This 
MDS solution has a significantly higher log likelihood than the multiple regression 
solution in the previous section (  ∆Λ = 278.04>c2

0.05
(28) = 41.35  ), so that the MDS 

configuration of Fig.  15.7  is more accurate for predicting image quality than the 
MR configuration of Fig.  15.6 . However, note the elongated confidence ellipses on 
the stimulus points, which indicate that the stimulus positions are ill determined in 
the direction orthogonal to the quality vectors. This is an instance where it would 
be interesting to compare the ellipsoidal ACIs with the “likelihood ratio” ACIs 
(something that is currently not implemented in XGms), since the elliptical 
approximation to the log likelihood may not be sufficiently accurate in this case. 
Comparison between a 2D and a 1D configuration using the log likelihood differ-
ence measure reveals that there is nevertheless statistical evidence (  ∆Λ =  92.72 > 
c2

0.05
 (16) = 26.31  ) for a 2D configuration over a 1D configuration. Despite the fact 

that there is statistical evidence for a 2D solution, a 1D solution might be preferred 
because of the obvious difficulty of interpreting the configuration in Fig.  15.7 . The 
problem is obviously due to the fact that the quality judgments only measure stimulus 
variations in one direction. It has been shown in  [9 ,  10]  that a much more stable 2D 
configuration arises when noise and blur judgments, which correspond to different 
directions in this space, are combined with the quality judgments.    

  Fig. 15.7    MDS model for quality judgments on images with blur and noise       
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  15.4 The XGms Interface to the Geometrical Model  

 In order to control model parameters and options, and in order to feedback the 
modeling results to the user, an appropriate interface to the geometrical model of 
Fig.  15.2  is required. Most existing statistical programs can be characterized as 
off-line programs (see for instance  [1]  for an overview of computer programs for 
MDS). This implies that the user must enter his/her choice of statistical method, 
and that the results are returned as text and graphs, to be examined after the analysis 
has finished. This makes it very difficult and cumbersome to appreciate the impact 
of alternative model choices, and hence to choose the model that most adequately 
describes the data. Also, since such programs are nonlinear optimization programs, the 
reported solution may correspond to a local optimum instead of a global one. The 
interactive program XGvis  [2]  is one of the few examples that has been developed 
to help remedy such problems. The program XGvis allows to interactively control 
the main parameters in an MDS model, and exchanges the calculated stimulus 
configuration with a second program, called XGobi  [18] . 

 This latter program is an interactive dynamic data visualization tool for the X 
Window environment. By combining the functionality of both programs, the user 
is not only able to dynamically alter the parameters of an MDS model within 
XGvis, but he can also view and manipulate the stimulus configuration in XGobi. 
This interactivity for instance allows the user to assist the optimization algorithm 
in avoiding sub-optimum solutions that correspond to local minima. 

 Like most MDS programs  [1] , the XGvis program only models continuous dis-
similarity data of a single subject. In our view, this functionality is too limited for 
modeling more complex measurement situations, such as when relationships 
between multiple variables need to be established. In order to overcome these limi-
tations, XGvis has been extended to include the joint analysis of data from single-
stimulus scaling (such as in Fig.  15.2 ), double-stimulus difference scaling and 
dissimilarity scaling for multiple variables (the latter options are discussed in  [10 , 
 11] ). Another extension of the resulting program XGms is that it not only supports 
continuous data but also discrete (metric and non-metric) data. The graphical user 
interface to XGms is depicted in Fig.  15.8  for the (Chlorine) data set in Example 
15.2 of the previous section. This interface evolved from the graphical user inter-
face of the XGvis program  [2] . 

 The panel at the top contains the major action buttons. The user can either 
specify an initial stimulus configuration at startup or can load a new stimulus 
configuration (using “Load CONF”) at any time during the XGms session. The 
current stimulus configuration can be used for MR analysis against the experi-
mental data. Alternatively, the current stimulus configuration can be used as the 
initial configuration in an MDS analysis. Either the original data (Ai), power-
transformed data (At) or spline-transformed data (As) can be used in the MR or 
MDS analysis. In the example, power-transformed attribute data are used. The 
stimulus configuration is continuously exchanged between the statistical mode-
ling program XGms and the visualization program XGobi  [18] , so that this latter 
program can be used to manipulate and render the configuration. In order to allow 
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processing by other data analysis or visualization programs, most intermediate 
data in the XGms program can also be output to ASCII files using the options in 
the “file” menu. File menu options can also be used to request more detailed 
graphical representations that include the ACIs needed for statistical inference. 

 The left panel in the interface allows the user to control the most important 
parameters of the geometrical model, such as

   1.    the dimension  n  of the stimulus space,  
   2.    the noise model used,  
   3.    the prediction model used (individual or shared attribute vector),  
   4.    the parameters  q ,  t  and  b  that control the nonlinear power-like transformations 

on the variable data, and  
   5.    the number  s  of internal knot points in a monotonically increasing spline 

transformation.     

 Xgms can also perform clustering on the stimulus configuration; and the left 
panel contains two action buttons that allow to interactively control this clustering. 
The user can obtain ML statistics, including the current number of DOF in the 
model and the likelihood value of the model, at any time in the XGms session by 
hitting the “ML statistics” button. XGms compares the outcomes on two successive 
calls to “ML statistics.” In this way, c 2 -tests between alternative models can be 
made in order to infer which model is most appropriate. If data for several attributes 
are available, then the “current” selection allows to view the settings and model fits 

 Fig. 15.8    XGms graphical user interface to the data set in Example 2 (See Color Plates)  



340 J.-B. Martens

for the current attribute. The user can for instance select which parameters of the 
power-like transformation are fixed to a user-specified value, and which can be 
optimized by XGms. Attributes can also be grouped so that they share a common 
prediction vector. It is also possible to exclude the subset of the data currently being 
viewed from the model optimization. 

 The graph in the upper-right corner displays how the ML optimization criterion 
(which is the negated log likelihood) has varied as a function of time during the 
XGms session. In addition, a scatter plot of transformed experimental data (y:T(A)) 
versus predicted model data (x:a), and a bar plot representing the histogram of the 
transformed experimental data (T(A)) are shown for the `current’ attribute. The 
data in the scatter plot “Attribute - x:a, y:T(A)” can also be output to the visualiza-
tion program XGobi in order to examine them more closely. The small panel “x:A, 
y:T(A)” depicts the monotonically increasing transformation that is performed in 
case the data are considered to be non-metric. It is the inverse   T

ak
(a) = R–1

ak
 (A)   of the 

response function in Fig.  15.2 .  

  15.5 Conclusions  

 We have argued how statistical modeling can profit from interactive visualization. 
Moreover, we have introduced a specific class of geometrical models that we 
consider to be intuitive, but nevertheless general enough to capture a large number 
of interesting data analysis situations. We have developed the interactive visualization 
program XGms for interaction with this class of models. Although the mathemati-
cal basis for this work was already presented in earlier publications  [10 ,  11] , 
experience with other users than the author has revealed that some aspects of the 
model are fairly easy to understand and apply, but that exploiting the full potential 
requires an introduction to the less straightforward aspects. This was an important 
motivation for the introduction to ML statistics and the discussion of example 
applications provided in this chapter. 

 We propose that an interactive visualization system for statistical modeling 
should contain three main components. First, it should incorporate a statistical 
modeling engine (or expert system) that can perform ML estimations of statistical 
model parameters, and that can construct the CIs required for statistical inference. 
Second, it should provide an interface through which users can intuitively formulate 
their statistical questions. Third, it should render the results of the analysis in a way 
that can be easily and quickly assessed by the users. Further developments in each 
of these components within XGms are foreseen. Concerning component one, we 
should note that the model shown in Fig.  15.2  covers only part of the modeling 
capabilities of the interactive visualization program XGms. More precisely, next to 
individual scaling data, the model can also handle pairwise comparisons, such as 
dissimilarity data or difference data  [10] . Another important aspect is that currently 
only ellipsoidal ACIs (using the “Wald” approximation) are available, while there 
is an obvious interest to also implement ACIs based on the “likelihood ratio” 
approximation. Concerning component two, it is clear that extensive usage scenarios, 
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such as the ones described in the examples, are instrumental to establishing the kind 
of user actions that are potentially most useful. Additional support, such as for factor 
analysis of attribute vectors, could make the interaction at this stage less elaborate 
at times (currently, the reported factor analysis in Example 3 involved some text 
editing of input files and restarting of the program). A more intuitive interface than 
the current buttons and menus, i.e., one providing a more explicit relationship to the 
statistical model (such as in Fig.  15.2 ), would also be a great improvement, espe-
cially for first-time users. Inspiration might be drawn from related recent programs 
for Partial Least Squares modeling, i.e., Smart PLS (  http://www.smartpls.de    ) and 
PLS-Graph (  http://disc-nt.cba.uh.edu/plsgraph/)    , on how models can be graphically 
represented in an easy-to-understand way. The interface that is currently implemented 
within XGms (and XGobi) is heavily influenced by the options available within the 
low-level X Windows toolkit being used, and is clearly outdated. More advanced 
rendering techniques could obviously help to make the interface more appealing 
and revealing (for instance, better 3D rendering could lower the threshold for moving 
from 2D to 3D models).  

  15.6  Summary  

 This chapter explains how statistical models can be used in the interactive analysis 
of experimental data. It is discussed how maximum likelihood estimation can map 
experimental data into model parameters, and how confidence intervals on these 
parameters play a key role in drawing inferences. One frequent inference is whether 
or not similar data collected in two different experimental conditions require a 
significant change in model parameters, hence indicating that the conditions are not 
equivalent. Another frequent inference is whether a simple or a more complex 
model needs to be adopted for describing observed data. It is argued that the user, 
who has insight into the problem underlying the data, should be allowed to play an 
active part in selecting models and specifying the inferences of interest. Hence, the 
need for interactive visualization is identified and the program XGms that has been 
developed for this purpose is discussed. The fact that the statistical models imple-
mented within XGms are geometrical in nature simplifies their visualization and 
interpretation. The flexibility of modeling diverse data in XGms is demonstrated by 
means of several examples. 

 It is proposed that an interactive visualization system for statistical modeling 
should contain three main components. First, it should incorporate a statistical 
modeling engine (or expert system) that can perform maximum likelihood estimations 
of statistical model parameters, and that can construct the confidence intervals 
required for statistical inference. Second, it should provide an interface through 
which users can intuitively formulate their statistical questions, such as which models 
to compare. Third, it should render the results of the analysis in a way that can be 
easily and quickly assessed by the users. The paper discusses how the program 
XGms meets with these demands and how it can possibly be extended in the future 
to overcome current limitations.      
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